
Network Provenance History
The provenance history aspect of an NDEx network is used to document the work៯�ow of events and information sources that produced the
current network. API operations that create or update networks add default events to the provenance history. Applications can also explicitly
modify the provenance history in order to customize events, controlling the granularity of events recorded and the level of detail captured.

Motivation
A network can represent assertions of biological relationships that are the results of experimental, analytic, or curation processes. Networks may
in turn serve as inputs to further processes of analysis and model creation. If the work៯�ow and dependencies on information sources are clearly
documented, researchers may better understand the meaning of the relationships in the network and are better empowered if they wish to
reproduce the analyses leading to the network. To achieve these goals, networks stored in NDEx can optionally include a provenance history
aspect that can be accessed and managed via the NDEx API.

For example, a network might be derived by an algorithm which ៯�nds subnetworks based on experimental data mapped to entities in a
reference network; in this case the application performing the analysis should record the analysis event in the provenance history of the output
network, including references or descriptions of the algorithm used, the input experimental data, and a description of the input reference
network.

For robustness, the provenance history stores descriptions of ‘ancestor' networks and other information sources, not just links to those
resources. This preserves the utility of the provenance history in situations in which some or all of the input information sources are unavailable
or have been modi៯�ed since they were used in the work៯�ow. Researchers (or algorithms) can inspect the provenance history of the current
network to address questions about the status of all of the inputs to the work៯�ow.

Related Work
NDEx network provenance history is similar in intent to Synapse Analytical Provenance
(https://www.synapse.org/#!Wiki:syn2305384/ENTITY/62865)

Provenance History Structure
A provenance history is a tree structure containing ProvenanceEntity and ProvenanceEvent objects (Figure 1). It is serialized as a JSON structure
by the NDEx API. The root of the tree structure is a ProvenanceEntity object representing the current state of the network. Each
ProvenanceEntity may have a single ProvenanceEvent object that represents the immediately prior event that produced the ProvenanceEntity. In
turn, linked to network of ProvenanceEvent and ProvenanceEntity objects representing the work៯�ow history that produced the current state of
the Network. The provenance history records signi៯�cant events as Networks are copied, modi៯�ed, or created, incorporating snapshots of
information about "ancestor" networks.

ProvenanceEntity

uri >> URI of the resource described by the ProvenanceEntity. This ៯�eld will not be set in some cases, such as a ៯�le upload or an algorithmic
event that generates a network without a prior network as input.

creationEvent – ProvenanceEvent >> Has semantics of PROV:wasGeneratedBy

properties >> array of SimplePropertyValuePair objects

ProvenanceEvent

endingAtTime – timestamp >> Has semantics of PROV:endingAtTime

startingAtTime – timestamp >> Has semantics of PROV:endingAtTime

inputs – array of ProvenanceEntity objects >> Has semantics of PROV:used

properties >> array of SimplePropertyValuePair objects

https://www.synapse.org/#!Wiki:syn2305384/ENTITY/62865

Provenance History and Network Equivalence
The provenance history can be used to infer network equivalence, whether a given network stored in NDEx has the same content as another
network or an external resource. This is valuable since in the general case, computing equivalence by algorithm may be computationally
expensive or could require network format-speci៯�c knowledge.

Two networks on NDEx servers may be inferred to be equivalent if the following conditions are met:

one is the ancestor of the other in their provenance histories
the events between the ancestor and descendent are all information preserving COPY operations.
the ancestor has not been modi៯�ed since the initial COPY operation.

Similarly, a network may be considered equivalent to an external source in either of the following cases:

the network is the output of an UPLOAD event of a ៯�le derived from the external source and the external source has not been modi៯�ed
since the time of the upload.
the network is an unmodi៯�ed copy of a network meeting the above criteria.

Provenance Updates by NDEx API Operations
Seven REST API methods perform default updates to the provenance history of a network. They record basic information about the network (e.g.
number of edges, nodes, title, description, version) and the event (e.g. type, time, username, ៯�rst name, last name).

addNamespace /network/{networkId}/namespace

Records the added namespace name and value as an event property.

setNetworkProperties /network/{networkId}/properties

Records properties as event properties.

setNetworkPresentationProperties /network/{networkId}/presentationProperties

Records presentation properties as event properties.

updateNetworkPro៯�le /network/{networkId}/summary

Records network name, description, and version as event properties and displays the current state as node properties.

createNetwork /network/asNetwork

No additional information recorded.

createNetwork /network/asPropertyGraph

No additional information recorded.

uploadNetwork /network/upload

Records ៯�lename as an event property.

Network Updates that do NOT Modify Provenance History
The provenance history is NOT updated when:

Network membership information is changed or when network visibility (e.g. PUBLIC or PRIVATE) is changed.
The provenance history is explicitly updated by the API.

Reading and Setting Provenance History
An application can read and alter the provenance history without adding any additional event to the provenance history. The API methods are:

getProvenance /network/{networkId}/provenance

setProvenance /network/{networkId}/provenance

Provenance Events vs. Network Modi៯�cation Times
Any operation that modi៯�es the network, including changes to visibility or provenance also changes the last modi៯�cation date of the network.

Changes to network membership – what users have access to the network – do not modify the network itself and so do not change either the
modi៯�cation date or provenance history.

Properties of ProvenanceEntity and ProvenanceEvent objects
The standard ៯�elds in ProvenanceEntity and ProvenanceEvent objects correspond to relationships de៯�ned in the PROV-O ontology. Other
property-value pairs can annotate these objects to provide more information about the entities and events. Any ad hoc pair of strings can be
added as a property-value pair, and the properties used may be idiosyncratic to the recorded events and entities. However, the use of properties
de៯�ned in the Dublin Core (DC) metadata annotations and the Provenance, Authoring and Versioning ontology (PAV) are preferred when
applicable..

It is important to note a di៛�erence in the use of these ontologies in an NDEx provenance structure and the original intent. A ProvenanceEntity is
a description of the referenced object, not the object itself. Therefore, a property such as "dc:title" that is asserted for a ProvenanceEntity refers
to the original entity that the ProvenanceEntity represents. The provenance history references ancestor networks and other data sources but
can also include self-contained descriptions of those objects that capture their state at the time they were used.

Dublin Core (DC) Properties

dc:title
dc:description
dc:rights
dc:rightsHolder
dc:format

PAV Properties

pav:retrievedFrom >> Direct retrieval – a COPY of the source network with no transformation of the content.

pav:importedFrom >> Import with some transformation, as in a ៯�le UPLOAD where the source data is processed to create the network. The
content re៯�ects the external source but potentially has di៛�erences dependent on the import method.

pav:derivedFrom >> The network was generated by an operation that transforms the content of the source.

pav:sourceAccessedAt >> The network was generated by a transformation operation that consulted the source as part of the
transformation.

pav:version >> The version of the current network.

pav:previousVersion >> The previous version. Note that this might be the version of a network that is not in the provenance history – a
version could be created from new sources, not necessarily as a transformation of an earlier version.

Provenance History Use Cases

Copying Networks

In a copy operation, an application / utility creates a new network (the target) that encodes the same content as an existing network (the source).

In the resulting target provenance history, the root ProvenanceEntity represents the target and the copy operation is represented as a
ProvenanceEvent of type COPY in which the output is the root entity and the input is a ProvenanceEntity representing the source.

The ProvenanceEntity representing the source and all of its prior entities and events are copied from the provenance history of the source.

Information stored in the provenance history about the source is intended to re៯�ect the state of the source at the time of the copyand should
not be updated to re៯�ect subsequent changes in the source. Information about the source stored in the provenance history is thereby
preserved, regardless of whether the source is later modi៯�ed or deleted.

Upload / Import Network File

Upload is a special type of import, where the ProvenanceEntity for the source should store information about the uploaded ៯�le in the properties,
such as the ៯�lename, ៯�le type, or data size.

Network Query / Filter

A network created by a query or other operation that retrieves part of the source is a common type of transformation operation. The new
network is derived from the source.

Editing Operations

In any case where the source network has the same UUID as the target, the ProvenanceEvent is an edit of some type. Because the event can
have both startingAt and endingAt properties, the editing process can span an arbitrary amount of time. The application managing the editing
process can therefore control the granularity of the provenance history. For example, an editing application could represent a long sequence of
edits in a verbose chain of events and intermediate states or it could simply keep updating the endingAt time as the edits continued. In both
cases, the resulting provenance history would be a valid representation of the work៯�ow, although one would capture greater detail than the
other.

Translation of Network Identi៯�ers

In the case where a utility creates a network that has content equivalent or homologous to the source but described in a di៛�erent identi៯�er
system (such as gene ids replaced with corresponding gene symbols), an additional resource describing the identi៯�er mapping is typically
involved. In this case, the mapping resource is also an input to the ProvenanceEvent, and it is appropriate to use the property
pav:sourceAccessedAt to describe the relationship.

Merging Networks

"Merging" in this context means a modi៯�cation operation in which the information in network A is augmented by information coming from
network B, or where a new network is created from both A and B. This creates a branched provenance history in which the ProvenanceEvent for
the merge has two inputs, both network A and network B.

Share This!

 Twitter  Facebook  Google Plus  LinkedIn


Back to Top

POWERED BY

 (http://www.jetbrains.com/)

TERMS & CONDITIONS

NDEx Terms, License and Sources (../disclaimer-license/) information.

Copyright © 2017 Regents of the University of California and Cytoscape Consortium. All rights reserved.

FOLLOW US

 (https://twitter.com/NDExProject)  (https://www.youtube.com/channel/UCc7J1020F7e25F-zWEMtM0A)

 (https://www.linkedin.com/company/3991823)

http://www.jetbrains.com/
http://staging.ndexbio.org/disclaimer-license/
https://twitter.com/NDExProject
https://www.youtube.com/channel/UCc7J1020F7e25F-zWEMtM0A
https://www.linkedin.com/company/3991823

